#include "cuda_runtime.h"#include "device_launch_parameters.h"#include "device_functions.h"#include#include #include cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);#define TILE_WIDTH 16 __global__ void MatrixMulKernle(int m, int n, int k, int *A, int *B, int *C){ //申请共享内存,存在于每个block中 __shared__ int ds_A[TILE_WIDTH][TILE_WIDTH]; __shared__ int ds_B[TILE_WIDTH][TILE_WIDTH]; //简化坐标记法,出现下面6个表示的地方就是并行的地方。 int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; //确定结果矩阵中的行和列 int iy = by * TILE_WIDTH + ty; int ix = bx * TILE_WIDTH + tx; if (iy >= m || ix >= k) { return; } int gw = gridDim.x; int gh = gridDim.y; //临时变量 int Cvalue = 0; //循环读入A,B瓦片,计算结果矩阵,分阶段进行计算 for (int t = 0; t < (n + TILE_WIDTH - 1) / TILE_WIDTH; ++t) { ds_A[tx][ty] = A[iy*n + t*TILE_WIDTH + tx]; ds_B[tx][ty] = B[(t*TILE_WIDTH + ty)*k + ix]; __syncthreads(); for (int i = 0; i < TILE_WIDTH; ++i) Cvalue += ds_A[i][ty] * ds_B[tx][i];//从shared memory中取值 C[iy*k + ix] = Cvalue; }}//不适用shared memory__global__ void addKernel(int *c, const int *a, const int *b){ //const int bs = CUDA_LG::block_size; //BLOCK_SIZE; int ix = blockIdx.x * blockDim.x + threadIdx.x, iy = blockIdx.y * blockDim.y + threadIdx.y; if (ix >= 100 || iy >= 100) { return; } int sum = 0; for (int i = 0; i != 200; ++i) { int ta = a[iy * 100 + i]; int tb = b[i * 100 + ix]; sum += ta*tb; } c[iy * 100 + ix] = sum;}int main(){ const int arow = 100; const int acol = 200; const int brow = 200; const int bcol = 100; const int arraySize = arow*acol; int * a = new int[arraySize]; int * b = new int[arraySize]; int * c = new int[arraySize/2]; for (int j = 0; j != arow; ++j) { for (int i = 0; i != acol; ++i) { a[j*acol + i] = i; } } for (int j = 0; j != brow; ++j) { for (int i = 0; i != bcol; ++i) { b[j*bcol + i] = i; } } addWithCuda(c, a, b, arraySize); cudaDeviceReset(); printf("c0=%d c1=%d c[3,50]=%d \n", c[0], c[1],c[3*100+50]); delete[] a; delete[] b; delete[] c; system("pause"); return 0;}// Helper function for using CUDA to add vectors in parallel.cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size){ int *dev_a = 0; int *dev_b = 0; int *dev_c = 0; cudaError_t cudaStatus; // Choose which GPU to run on, change this on a multi-GPU system. cudaStatus = cudaSetDevice(0); cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int)); cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int)); cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int)); cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice); cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice); int thread_x = 100; int thread_y = 100; dim3 block(TILE_WIDTH, TILE_WIDTH); int grid_w = (thread_x + block.x - 1) / block.x; int grid_h = (thread_y + block.y - 1) / block.y; dim3 grid(grid_w, grid_h); // Launch a kernel on the GPU with one thread for each element. TIME_INIT; TIME_MARK("t1"); for(int i=0;i!=10000;++i) addKernel << < grid, block >> > (dev_c, dev_a, dev_b);//486ms TIME_MARK("t2"); for (int i = 0; i != 10000; ++i) MatrixMulKernle << < grid, block >> >(100, 200, 100, dev_a, dev_b, dev_c);//1069ms TIME_MARK("t3"); TIME_PRINT; cudaStatus = cudaGetLastError(); cudaStatus = cudaDeviceSynchronize(); cudaStatus = cudaMemcpy(c, dev_c, size/2 * sizeof(int), cudaMemcpyDeviceToHost);Error: cudaFree(dev_c); cudaFree(dev_a); cudaFree(dev_b); return cudaStatus;}